Nutrients (Jun 2023)

Taxifolin Suppresses Inflammatory Responses of High-Glucose-Stimulated Mouse Microglia by Attenuating the TXNIP–NLRP3 Axis

  • Masayo Iwasa,
  • Hisashi Kato,
  • Kaori Iwashita,
  • Hajime Yamakage,
  • Sayaka Kato,
  • Satoshi Saito,
  • Masafumi Ihara,
  • Hideo Nishimura,
  • Atsuhiko Kawamoto,
  • Takayoshi Suganami,
  • Masashi Tanaka,
  • Noriko Satoh-Asahara

DOI
https://doi.org/10.3390/nu15122738
Journal volume & issue
Vol. 15, no. 12
p. 2738

Abstract

Read online

Type 2 diabetes mellitus is associated with an increased risk of dementia, potentially through multifactorial pathologies, including neuroinflammation. Therefore, there is a need to identify novel agents that can suppress neuroinflammation and prevent cognitive impairment in diabetes. In the present study, we demonstrated that a high-glucose (HG) environment elevates the intracellular reactive oxygen species (ROS) levels and triggers inflammatory responses in the mouse microglial cell line BV-2. We further found that thioredoxin-interacting protein (TXNIP), a ROS-responsive positive regulator of the nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, was also upregulated, followed by NLRP3 inflammasome activation and subsequent interleukin-1beta (IL-1β) production in these cells. Conversely, caspase-1 was not significantly activated, suggesting the involvement of noncanonical pathways in these inflammatory responses. Moreover, our results demonstrated that taxifolin, a natural flavonoid with antioxidant and radical scavenging activities, suppressed IL-1β production by reducing the intracellular ROS levels and inhibiting the activation of the TXNIP–NLRP3 axis. These findings suggest the novel anti-inflammatory effects of taxifolin on microglia in an HG environment, which could help develop novel strategies for suppressing neuroinflammation in diabetes.

Keywords