IEEE Access (Jan 2021)

Response and Surveillance System for Diarrhoea Based on a Patient Symptoms Using Machine Learning: A Study on Eswatini

  • Sibongakonke Kwanele Zungu,
  • Qi-Xian Huang,
  • Min-Yi Chiu,
  • Hung-Min Sun

DOI
https://doi.org/10.1109/ACCESS.2021.3124964
Journal volume & issue
Vol. 9
pp. 152945 – 152959

Abstract

Read online

Utilizing supervised machine learning algorithms to develop a surveillance and response system based on symptoms of diarrhoea, contingent on the Support Vector Machine (SVM) to predict the probable disease using labelled data. Diarrhoea is amongst the top ten diseases which kill. A prototype system is developed based on the SVM algorithm. The prototype system takes six patient symptoms that which is input, from the user and the output result becomes the prognosis which may likely occur based solely on the given symptoms. Two other supervised learning models have been utilized in the prediction process, Random Forest Model (RFC) and Naïve Bayes Model (NB). Furthermore, a visualization on google maps (my maps) on the area in which a diarrhoea outbreak would likely occur. The constituency and the region of the patient will be used to place a pin on my maps, giving a visualization on the map, with a mapping structure this allows for a vivid demonstration of how diarrhoea is spreading in Eswatini. SVM received an average of 100% accuracy. The other two supervised learning models, random forest model and naïve Bayes model received 97.62% average accuracy on the same dataset. It shows that the SVM does well in data classification and with a small dataset.

Keywords