BMC Veterinary Research (Aug 2017)
OmpA protein sequence-based typing and virulence-associated gene profiles of Pasteurella multocida isolates associated with bovine haemorrhagic septicaemia and porcine pneumonic pasteurellosis in Thailand
Abstract
Abstract Background Pasteurella multocida is a Gram-negative bacterium that causes economically significant infections of a broad range of animal species. Pneumonic and septicaemic pasteurellosis caused by this bacterium remain important problems in pigs, cattle, and water buffaloes in Thailand. The aim of this study was to characterise the virulence-associated gene profiles and to develop an OmpA molecular typing scheme for classifying 191 bovine and porcine isolates of P. multocida collected between 1989 and 2012 in Thailand using polymerase chain reactions (PCRs), nucleotide sequencing, and sequence and structural bioinformatics analyses. Results PCR screening successfully characterised the profiles of 25 virulence-associated genes in all isolates. The gene profiles separated these isolates into bovine and porcine clusters based on eight genes (hgbB, hsf1, tadD, nanH, pfhA, plpE, pmHAS, and tbpA). Phylogenetic analyses of the nucleotide and protein sequences corresponding to the ompA gene, which encodes a major outer membrane surface protein, showed two major bovine and porcine clusters. Structural prediction and analysis of the dN/dS ratio revealed four hypervariable extracellular loops of the OmpA transmembrane domains. These four loops were used to develop an OmpA typing scheme. This scheme classified 186 isolates into five major loop sequence types (LST8, LST12, LST15, LST18, and LST19), consistent with the phylogenetic results. The loop regions of the bovine isolates were predicted to be more antigenic than those of the porcine isolates. Thus, molecular evolution of the OmpA proteins could be used to classify P. multocida isolates into different capsular types, host types, and, possibly, pathogenicity levels. Conclusions Together with the virulence-associated gene profiles, the typing reported in this work provides a better understanding of P. multocida virulence. Effective monitoring and potential strain-specific subunit vaccines could be developed based on these loop oligopeptides.
Keywords