Journal of Pure and Applied Microbiology (Jun 2021)

Regulatory Action of all trans Retinoic Acid on Metastasis Induced Lung Cell Metabolic Changes during Implantation of B16F10 Cancer Cells in C57BL6 Mice

  • VM Berlin Grace,
  • D David Wilson,
  • S Saranya,
  • Rohit Peardon

DOI
https://doi.org/10.22207/JPAM.15.2.26
Journal volume & issue
Vol. 15, no. 2
pp. 743 – 751

Abstract

Read online

The changes that occur during metastasis lodging is under intense research now to develop preventive new drugs to fight against the deadly metastasis. The molecular drug, all trans Retinoic Acid (ATRA) has regulatory effects on signal mediated metabolism. In this study, we have analyzed the metastasis facilitating metabolic changes in mice lung when a highly metastatic melanoma cell line (B16F10) having potency to lodge in lung was implanted via tail vein injection into C57BL/6 mice (1×106 cells/ml in PBS). One group of implanted mice were treated with 0.60 mg of ATRA per Kg body weight daily for 21 days. The alteration of protein, enzymatic and non-enzymatic antioxidants (SOD, Catalase, GPX, GSH) levels and the lipid profile with cholesterol level were evaluated in the lung tissues. The ATRA treatment caused 62.16% inhibition on metastatic nodule formation. Compared to normal mice, the cancer control mice showed an increased (p< 0.01**) total protein, LPO and NO and a decreased antioxidant. In ATRA treated group, all these levels were reverted to near normal levels with a high significance (p< 0.01**) difference from untreated cancer mice. The lipid profile and cholesterol level also were altered in cancer and were normalized in ATRA treated group with high significance (p< 0.01**). All these results implies that the metabolic changes induced in the lung tissue during metastatic lodging of melanoma cells were prevented and regularized by the ATRA treatment in vivo which give a scope of anti-metastatic therapy using ATRA

Keywords