mBio (Dec 2013)

Imaging Early Pathogenesis of Bubonic Plague: Are Neutrophils Commandeered for Lymphatic Transport of Bacteria?

  • David M. Bland,
  • Deborah M. Anderson

DOI
https://doi.org/10.1128/mBio.00837-13
Journal volume & issue
Vol. 4, no. 6

Abstract

Read online

ABSTRACT Vector-borne infections begin in the dermis when a pathogen is introduced by an arthropod during a blood meal. Several barriers separate an invading pathogen from its replicative niche, including phagocytic cells in the dermis that activate immunity by engulfing would-be pathogens and migrating to the lymph node. In addition, neutrophils circulating in the blood are rapidly recruited when the dermal barriers are penetrated. For flea-borne disease, no insect-encoded immune-suppressive molecules have yet been described that might influence the establishment of infection, leaving the bacteria on their own to defend against the mammalian immune system. Shortly after a flea transmits Yersinia pestis to a mammalian host, the bacteria are transported to the lymph node, where they grow logarithmically and later spread systemically. Even a single cell of Y. pestis can initiate a lethal case of plague. In their article, J. G. Shannon et al. [mBio 4(5):e00170-13, 2013, doi:10.1128/mBio.00170-13] used intravital microscopy to visualize trafficking of Y. pestis in transgenic mice in vivo, which allowed them to examine interactions between bacteria and specific immune cells. Bacteria appeared to preferentially interact with neutrophils but had no detectable interactions with dendritic cells. These findings suggest that Y. pestis infection of neutrophils not only prevents their activation but may even result in their return to circulation and migration to distal sites.