Scientific Reports (Apr 2022)
Promotion of seed germination and early plant growth by KNO3 and light spectra in Ocimum tenuiflorum using a plant factory
Abstract
Abstract The plant factory with artificial light (PFAL) is a novel cultivation system of agriculture technology for crop production under controlled-environment conditions. However, there are a number of issues relating to low quality of seed germination and seedling vigor that lead to decreased crop yields. The present study investigates the optimal KNO3 concentration for seed germination, and the influence of different light spectra on early plant growth in holy basil (Ocimum tenuiflorum) under a PFAL system. Experiment 1 investigated the effects of KNO3 concentration (0, 0.2, 0.4 and 0.6%) on germination of seeds primed for 24 h under white Light emitting diodes (LED). Results show that sowing holy basil seeds in 0.4% KNO3 enhanced seed germination percentage (GP) and germination index (GI), while decreasing mean germination time (MGT). Experiment 2 investigated the effect of four light spectra on seed germination and early plant growth by sowing with 0 and 0.4% KNO3 and germinating for 15 days continuously under different monochromatic light settings: white, red, green and blue in PFAL. It was found that the green spectrum positively affected shoot and root length, and also decreased shortened MGT at 0 and 0.4% KNO3 when compared with other light treatments. Additionally, pre-cultivated seedlings under the green spectrum showed significant improvement in the early plant growth for all holy basil varieties at 15 days after transplanting by promoting stem length, stem diameter, plant width, fresh weights of shoot and root, and dry weights of shoot and root. These findings could be useful in developing seed priming and light treatments to enhance seed germination and seedling quality of holy basil resulting in increased crop production under PFAL.