BMC Infectious Diseases (Nov 2019)

Application of MALDI-TOF MS to rapid identification of anaerobic bacteria

  • Ying Li,
  • Mingzhu Shan,
  • Zuobin Zhu,
  • Xuhua Mao,
  • Mingju Yan,
  • Ying Chen,
  • Qiuju Zhu,
  • Hongchun Li,
  • Bing Gu

DOI
https://doi.org/10.1186/s12879-019-4584-0
Journal volume & issue
Vol. 19, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been rapidly developed and widely used as an analytical technique in clinical laboratories with high accuracy in microorganism identification. Objective To validate the efficacy of MALDI-TOF MS in identification of clinical pathogenic anaerobes. Methods Twenty-eight studies covering 6685 strains of anaerobic bacteria were included in this meta-analysis. Fixed-effects models based on the P-value and the I-squared were used for meta-analysis to consider the possibility of heterogeneity between studies. Statistical analyses were performed by using STATA 12.0. Results The identification accuracy of MALDI-TOF MS was 84% for species (I2 = 98.0%, P < 0.1), and 92% for genus (I2 = 96.6%, P < 0.1). Thereinto, the identification accuracy of Bacteroides was the highest at 96% with a 95% CI of 95–97%, followed by Lactobacillus spp., Parabacteroides spp., Clostridium spp., Propionibacterium spp., Prevotella spp., Veillonella spp. and Peptostreptococcus spp., and their correct identification rates were all above 90%, while the accuracy of rare anaerobic bacteria was relatively low. Meanwhile, the overall capabilities of two MALDI-TOF MS systems were different. The identification accuracy rate was 90% for VITEK MS vs. 86% for MALDI biotyper system. Conclusions Our research showed that MALDI-TOF-MS was satisfactory in genus identification of clinical pathogenic anaerobic bacteria. However, this method still suffers from different drawbacks in precise identification of rare anaerobe and species levels of common anaerobic bacteria.

Keywords