Nature Communications (Jun 2024)

Dynamic restructuring of nickel sulfides for electrocatalytic hydrogen evolution reaction

  • Xingyu Ding,
  • Da Liu,
  • Pengju Zhao,
  • Xing Chen,
  • Hongxia Wang,
  • Freddy E. Oropeza,
  • Giulio Gorni,
  • Mariam Barawi,
  • Miguel García-Tecedor,
  • Víctor A. de la Peña O’Shea,
  • Jan P. Hofmann,
  • Jianfeng Li,
  • Jongkyoung Kim,
  • Seungho Cho,
  • Renbing Wu,
  • Kelvin H. L. Zhang

DOI
https://doi.org/10.1038/s41467-024-49015-4
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Transition metal chalcogenides have been identified as low-cost and efficient electrocatalysts to promote the hydrogen evolution reaction in alkaline media. However, the identification of active sites and the underlying catalytic mechanism remain elusive. In this work, we employ operando X-ray absorption spectroscopy and near-ambient pressure X-ray photoelectron spectroscopy to elucidate that NiS undergoes an in-situ phase transition to an intimately mixed phase of Ni3S2 and NiO, generating highly active synergistic dual sites at the Ni3S2/NiO interface. The interfacial Ni is the active site for water dissociation and OH* adsorption while the interfacial S acts as the active site for H* adsorption and H2 evolution. Accordingly, the in-situ formation of Ni3S2/NiO interfaces enables NiS electrocatalysts to achieve an overpotential of only 95 ± 8 mV at a current density of 10 mA cm−2. Our work highlighted that the chemistry of transition metal chalcogenides is highly dynamic, and a careful control of the working conditions may lead to the in-situ formation of catalytic species that boost their catalytic performance.