Current Issues in Molecular Biology (Sep 2024)

Analysis of Codon Usage Bias in the Plastid Genome of <i>Diplandrorchis sinica</i> (Orchidaceae)

  • Xuhui Chen,
  • Yudi Zhao,
  • Shenghua Xu,
  • Yingze Zhou,
  • Lijie Zhang,
  • Bo Qu,
  • Yufeng Xu

DOI
https://doi.org/10.3390/cimb46090582
Journal volume & issue
Vol. 46, no. 9
pp. 9807 – 9820

Abstract

Read online

In order to understand the bias and main affecting factors of codon usage in the plastid genome of Diplandrorchis sinica, which is a rare and endangered plant species in the Orchidaceae family, the complete plastid genome sequence of D. sinica was downloaded from the GenBank database and 20 protein-coding sequences that met the analysis requirements were finally selected. The GC content, length of the amino acid (Laa), relative synonymous codon usage (RSCU), and effective number of codon (ENC) of each gene and codon were calculated using the CodonW and EMBOSS online programs. Neutral plot analysis, ENC-plot analysis, PR2-plot analysis, and correspondence analysis were performed using Origin Pro 2024 software, and correlation analysis between various indicators was performed using SPSS 23.0 software. The results showed that the third base of the codon in the plastid genome of D. sinica was rich in A and T, with a GC3 content of 27%, which was lower than that of GC1 (45%) and GC2 (39%). The ENC value ranged from 35 to 57, with an average of 47. The codon usage bias was relatively low, and there was a significant positive correlation between ENC and GC3. There were a total of 32 codons with RSCU values greater than 1, of which 30 ended with either A or U. There were a total of nine optimal codons identified, namely, UCU, UCC, UCA, GCA, UUG, AUA, CGU, CGA, and GGU. This study indicated that the dominant factor affecting codon usage bias in the plastid genome of D. sinica was natural selection pressure, while the impact of base mutations was limited. The codon usage patterns were not closely related to gene types, and the distribution of photosynthetic system genes and ribosomal protein-coding gene loci was relatively scattered, indicating significant differences in the usage patterns of these gene codons. In addition, the codon usage patterns may not be related to whether the plant is a photosynthetic autotrophic or heterotrophic nutritional type. The results of this study could provide scientific references for the genomic evolution and phylogenetic research of plant species in the family Orchidaceae.

Keywords