Nature Communications (Jul 2024)

Imaging nanomagnetism and magnetic phase transitions in atomically thin CrSBr

  • Märta A. Tschudin,
  • David A. Broadway,
  • Patrick Siegwolf,
  • Carolin Schrader,
  • Evan J. Telford,
  • Boris Gross,
  • Jordan Cox,
  • Adrien E. E. Dubois,
  • Daniel G. Chica,
  • Ricardo Rama-Eiroa,
  • Elton J. G. Santos,
  • Martino Poggio,
  • Michael E. Ziebel,
  • Cory R. Dean,
  • Xavier Roy,
  • Patrick Maletinsky

DOI
https://doi.org/10.1038/s41467-024-49717-9
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Since their first observation in 2017, atomically thin van der Waals (vdW) magnets have attracted significant fundamental, and application-driven attention. However, their low ordering temperatures, T c , sensitivity to atmospheric conditions and difficulties in preparing clean large-area samples still present major limitations to further progress, especially amongst van der Waals magnetic semiconductors. The remarkably stable, high-T c vdW magnet CrSBr has the potential to overcome these key shortcomings, but its nanoscale properties and rich magnetic phase diagram remain poorly understood. Here we use single spin magnetometry to quantitatively characterise saturation magnetization, magnetic anisotropy constants, and magnetic phase transitions in few-layer CrSBr by direct magnetic imaging. We show pristine magnetic phases, devoid of defects on micron length-scales, and demonstrate remarkable air-stability down the monolayer limit. We furthermore address the spin-flip transition in bilayer CrSBr by imaging the phase-coexistence of regions of antiferromagnetically (AFM) ordered and fully aligned spins. Our work will enable the engineering of exotic electronic and magnetic phases in CrSBr and the realization of novel nanomagnetic devices based on this highly promising vdW magnet.