Identification of Austwickia chelonae as cause of cutaneous granuloma in endangered crocodile lizards using metataxonomics
Haiying Jiang,
Xiujuan Zhang,
Linmiao Li,
Jinge Ma,
Nan He,
Haiyang Liu,
Richou Han,
Huiming Li,
Zhengjun Wu,
Jinping Chen
Affiliations
Haiying Jiang
South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
Xiujuan Zhang
Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong, China
Linmiao Li
Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong, China
Jinge Ma
Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong, China
Nan He
Guangdong Luokeng Shinisaurus crocodilurus National Nature Reserve, Shaoguan, Guangdong, China
Haiyang Liu
Guangdong Luokeng Shinisaurus crocodilurus National Nature Reserve, Shaoguan, Guangdong, China
Richou Han
Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong, China
Huiming Li
Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong, China
Zhengjun Wu
Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, Guangxi, China
Jinping Chen
Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong, China
The crocodile lizard (Shinisaurus crocodilurus Ahl, 1930) is an endangered reptile species, and in recent years many have died from diseases, especially the rescued and breeding individuals. However, pathogens underlying these diseases are unclear. In this study, we report our effort in rapidly identifying and isolating the pathogen that causes high mortality in crocodile lizards from Guangdong Luokeng Shinisaurus crocodilurus National Nature Reserve. The typical symptom is cutaneous granuloma in the infected crocodile lizards. Metagenomic next-generation sequencing (mNGS) is a comprehensive approach for sequence-based identification of pathogenic microbes. In this study, 16S rDNA based mNGS was used for rapid identification of pathogens, and microscopy and microbe isolation were used to confirm the results. Austwickia chelonae was identified to be the dominant pathogen in the granuloma using 16S rDNA based mNGS. Chinese skinks were used as an animal model to verify the pathogenicity of A. chelonae to fulfill Koch’s postulates. As expected, subcutaneous inoculation of A. chelonae induced granulomas in the healthy Chinese skinks and the A. chelonae was re-isolated from the induced granulomas. Therefore, A. chelonae was the primary pathogen that caused this high mortality disease, cutaneous granuloma, in crocodile lizards from Guangdong Luokeng Shinisaurus crocodilurus National Nature Reserve. Antibiotics analysis demonstrated that A. chelonae was sensitive to cephalothin, minocycline and ampicillin, but not to kanamycin, gentamicin, streptomycin and clarithromycin, suggesting a possible treatment for the infected crocodile lizards. However, surgical resection of the nodules as early as possible was recommended. This study is the first report of pathogenic analysis in crocodile lizards and provides a reference for disease control and conservations of the endangered crocodile lizards and other reptiles. In addition, this study indicated that mNGS of lesions could be used to detect the pathogens in animals with benefits in speed and convenient.