PLoS ONE (Jan 2023)

Resource-aware DBSCAN-based re-clustering in hybrid C-V2X/DSRC vehicular networks.

  • Jaafar Sadiq Alrubaye,
  • Behrouz Shahgholi Ghahfarokhi

DOI
https://doi.org/10.1371/journal.pone.0293662
Journal volume & issue
Vol. 18, no. 10
p. e0293662

Abstract

Read online

5G wireless networks are paying increasing attention to Vehicle to Everything (V2X) communications as the number of autonomous vehicles rises. In V2X applications, a number of demanding criteria such as latency, stability, and resource availability have emerged. Due to limited licensed radio resources in 5G cellular networks, Cellular V2X (C-V2X) faces challenges in serving a large number of cars and managing their network access. A reason is the unbalanced load of serving Base Stations (BSs) that makes it difficult to manage the resources of the BSs optimally regarding the frequency reuse in cells and its subsequent co-channel interference. It is while the routing protocols could help redirect the load of loaded BSs to neighboring ones. In this article, we propose a resource-aware routing protocol to mitigate this challenge. In this regard, a hybrid C-V2X/ Dedicated Short Range Communication (DSRC) vehicular network is considered. We employ cluster-based routing that enables many cars to interface with the network via some Cluster Heads (CH) using DSRC resources while the CHs send their traffic across C-V2X links to the BSs. Traditional cluster-based routings do not attend the resource availability in BSs that are supporting the clusters. Thus, our study describes an enhanced clustering method based on Density-Based Spatial Clustering of Applications with Noise (DBSCAN) that re-clusters the vehicles based on the resource availability of BSs. Simulation results show that the proposed re-clustering method improves the spectrum efficiency by at least 79%, packet delivery ratio by at least 5%, and load balance of BSs by at least 90% compared to the baseline.