Cell Death and Disease (Dec 2022)
HN1L/AP-2γ/PLK1 signaling drives tumor progression and chemotherapy resistance in esophageal squamous cell carcinoma
Abstract
Abstract Hematological and neurological expressed 1 like (HN1L) is a newly identified oncogene in lung cancer and hepatocellular carcinoma recently identified by our team, but its roles in the development and treatment of esophageal squamous cell carcinoma (ESCC) remain incompletely cataloged. Here, using ESCC tissue array and public database analysis, we demonstrated that HN1L was highly expressed in ESCC tissues, which was associated with tumor tissue invasion, poor clinical stage and short survival for ESCC patients. Loss- and gain-of-function studies in ESCC cells revealed that HN1L enhances ESCC cell metastasis and proliferation in vitro and in mice models. Moreover, high level of HN1L reduces the sensibility of ESCC cells to chemotherapeutic drugs, such as Docetaxel. Mechanism studies revealed that HN1L activated the transcription of polo-like kinase 1 (PLK1) by interacting with transcription factor AP-2γ, which increased the expression of malignancy related proteins Cyclin D1 and Slug in ESCC cells. Blocking PLK1 with inhibitor BI-2356 abrogated the oncogenic function of HN1L and significantly suppressed ESCC progression by combining with chemotherapy. Therefore, this study demonstrates the vital pro-tumor role of HN1L/AP-2γ/PLK1 signaling axis in ESCC, offering a potential therapeutic strategy for ESCC patients with high HN1L by blocking PLK1.