Data (Sep 2021)

Human Activity Vibrations

  • Sakdirat Kaewunruen,
  • Jessada Sresakoolchai,
  • Junhui Huang,
  • Satoru Harada,
  • Wisinee Wisetjindawat

DOI
https://doi.org/10.3390/data6100104
Journal volume & issue
Vol. 6, no. 10
p. 104

Abstract

Read online

We present a unique, comprehensive dataset that provides the pattern of five activities walking, cycling, taking a train, a bus, or a taxi. The measurements are carried out by embedded sensor accelerometers in smartphones. The dataset offers dynamic responses of subjects carrying smartphones in varied styles as they perform the five activities through vibrations acquired by accelerometers. The dataset contains corresponding time stamps and vibrations in three directions longitudinal, horizontal, and vertically stored in an Excel Macro-enabled Workbook (xlsm) format that can be used to train an AI model in a smartphone which has the potential to collect people’s vibration data and decide what movement is being conducted. Moreover, with more data received, the database can be updated and used to train the model with a larger dataset. The prevalence of the smartphone opens the door to crowdsensing, which leads to the pattern of people taking public transport being understood. Furthermore, the time consumed in each activity is available in the dataset. Therefore, with a better understanding of people using public transport, services and schedules can be planned perceptively.

Keywords