Scientific Reports (Mar 2024)

Blood-inspired random bit generation using microfluidics system

  • Inkwon Yoon,
  • Jong Hyeok Han,
  • Byeong Uk Park,
  • Hee-Jae Jeon

DOI
https://doi.org/10.1038/s41598-024-58088-6
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 10

Abstract

Read online

Abstract The development of random number generators (RNGs) using speckle patterns is pivotal for secure encryption key generation, drawing from the recent statistical properties identified in speckle-based imaging. Speckle-based RNG systems generate a sequence of random numbers through the unpredictable and reproducible nature of speckle patterns, ensuring a source of randomness that is independent of algorithms. However, to guarantee their effectiveness and reliability, these systems demand a meticulous and rigorous approach. In this study, we present a blood-inspired RNG system with a microfluidics device, designed to generate random numbers at a rate of 5.5 MHz and a high-speed of 1250 fps. This process is achieved by directing a laser beam through a volumetric scattering medium to procure speckle patterns. Additionally, designed microfluidic device requires only a minimal blood sample of 5 µl to capture these speckle patterns effectively. After implementing the two-pass tuple-output von Neumann debiasing algorithm to counteract statistical biases, we utilized the randomness statistical test suite from the National Institute of Standards and Technology for validation. The generated numbers successfully passed these tests, ensuring their randomness and unpredictability. Our blood-inspired RNG, utilizing whole blood, offers a pathway for affordable, high-output applications in fields like encryption, computer security, and data protection.

Keywords