Contributions to Geophysics and Geodesy (Sep 2018)

Detection of future changes in trends and scaling exponents in extreme short-term rainfall at selected stations in Slovakia

  • Silvia KOHNOVÁ,
  • Marianna VASILAKI,
  • Martin HANEL,
  • Ján SZOLGAY,
  • Kamila HLAVČOVÁ,
  • Athanasios LOUKAS,
  • Gabriel FÖLDES

DOI
https://doi.org/10.2478/congeo-2018-0009
Journal volume & issue
Vol. 48, no. 3
pp. 207 – 230

Abstract

Read online

This paper analyses projected changes in short-term rainfall events during the warm season (April – October) in an ensemble of 30 regional climate model (RCM) simulations. The analysis of trend changes and changes in scaling exponents was done for the Hurbanovo, Bratislava, Oravsk´a Lesná, and Myjava stations in Slovakia. The characteristics of maximum rainfall events were analysed for two scenario periods, one past and one future (1960–2000 and 2070–2100) and compared to the characteristics of the actual observed events. The main findings from the analysis show that 60-min shortterm events for most of the RCM simulations will either increase or remain constant. On the other hand, the depths and intensities of daily events are projected to increase significantly; in some cases they were found to be ten times larger. Trends in future events at the Hurbanovo station were found to be insignificant. In the other stations positive trends in future rainfall events prevail, except for daily rainfall at the Myjava station, which shows a negative trend. Using results from the selected simulations, the scaling exponents estimated are on average lower than the exponents of the data observed. On the other hand, due to the higher daily precipitation amounts in the future seen to all the scenarios, the downscaled values of short-term rainfall at all the stations analysed might be considerably higher in the future horizons, which could subsequently affect future design rainfall values for engineering designs.

Keywords