Engineering Access (Jul 2024)
Optimal Frequency Control in Interconnected Power System using Grey Wolf Optimization and Firefly Algorithms
Abstract
The inclusion of renewable energy sources (RES) into electricity grids raises numerous concerns. Designing interconnected power networks with minimal frequency variations and tie-line power fluctuations has become a top priority. Due to the intermittent nature of renewable energy sources, power generator fluctuations depend on environmental circumstances. This work presents a unique hybrid Fractional Order Controller (FOC) adapted for load frequency control in interconnected power networks. The novel controller combines the advantages of two commonly used fractional-order proportional-integral-derivative (FOPID) and tilt-integral-derivative (TID) controllers. Grey Wolf Optimization (GWO) and Firefly Algorithm (FFA) techniques are used to determine the optimal controller parameters. Optimization of the different controller parameters of a three-area interconnected power system incorporating different types of renewable energy sources and loads is considered. The simulation results obtained were compared by incorporating FOPID, FOPIDTID with GWO, and FOPID-TID with FFA. It is observed that FOPID-TID with FFA gives better performance in terms of high mitigation of frequency fluctuations, tie-line power deviation, increased robustness and enhanced system stability over a wide range of parameters, uncertainty, and fast transient response.
Keywords