Surface Layer Drag Coefficient at Different Radius Ranges in Tropical Cyclones
Lei Ye,
Yubin Li,
Zhiqiu Gao
Affiliations
Lei Ye
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China
Yubin Li
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China
Zhiqiu Gao
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China
Using dropsonde data and a flux-profile method, this study investigates the drag coefficient (Cd)–wind speed relationship within different radius ranges. The results show a systematic decrease of friction velocity u* from the range of R/RMW > 1.05 to that of R/RMW 1.05 or R/RMW −1 can be obtained. However, the roll feature becomes vague in the ranges of R/RMW Cd of R Cd of R −1, u* of R < 0.75RMW is significantly larger than that of R < 0.85RMW. This phenomenon is also linked to the TC dynamics (e.g., the large radial gradients of winds and the drastic vertical variation of the bulk Richardson number), but the speculation needs to be verified in future study.