Atmospheric Chemistry and Physics (Nov 2022)

Predicting atmospheric background number concentration of ice-nucleating particles in the Arctic

  • G. Li,
  • J. Wieder,
  • J. Wieder,
  • J. T. Pasquier,
  • J. Henneberger,
  • Z. A. Kanji

DOI
https://doi.org/10.5194/acp-22-14441-2022
Journal volume & issue
Vol. 22
pp. 14441 – 14454

Abstract

Read online

Mixed-phase clouds (MPCs) can have a net warming or cooling radiative effect on Earth's climate influenced by the phase and concentration of cloud particles. They have received considerable attention due to high spatial coverage and occurrence frequency in the Arctic. To initiate ice formation in MPCs at temperatures above −38 ∘C, ice-nucleating particles (INPs) are required, which therefore have important implications on the radiative properties of MPCs by altering the ice-to-liquid ratio of hydrometeors. As a result, constraining ambient INP concentrations could promote accurate representation of cloud microphysical processes and reduce the uncertainties in estimating the cloud-phase-related climate feedback in climate models. Currently, INP parameterizations are lacking for remote Arctic environments. Here we present INP number concentrations and their variability measured in Ny-Ålesund (Svalbard) at temperatures between 0 and −30 ∘C. No distinguishable seasonal difference was observed from 12 weeks of field measurements during October and November 2019 and March and April 2020. Compared to existing studies, the absence of a seasonal difference is not surprising, as most seasonal differences are reported for summer versus winter time INP concentrations. In addition, correlating INP concentrations to aerosol physical properties was not successful. Therefore, we propose a lognormal-distribution-based parameterization to predict Arctic INP concentration solely as a function of temperature, specifically for the transition seasons autumn and spring to fill in the data gap in the literature pertaining to these seasons. In practice, the parameterized variables allow for (i) the prediction of the most likely INP concentrations and (ii) the retrieval of the governing distribution of INP concentrations at given temperatures in the Arctic.