FME Transactions (Jan 2020)

Influence of variable particle size reinforcement on mechanical and wear properties of alumina reinforced 2014Al alloy particulate composite

  • Bharath V.,
  • Ashita D.H.,
  • Auradi V.,
  • Nagaral Madeva

Journal volume & issue
Vol. 48, no. 4
pp. 968 – 978

Abstract

Read online

Al2O3 may be the most important reinforcement in aluminum-based composites that are rising quickly in modern years. The significance of this paper is to study the influence of Al2O3p size variation (i.e. 53 µm and 88 µm) and content (i.e. 9, 12, and 15Wt %) on density, hardness, tensile strength, elongation to fracture and wear studies. During the preparation of each composite, the ceramic reinforcements were introduced in a novel way which involves two-stage additions of reinforcements during liquid stirring. It has been found that because the size of the Al2O3p is reduced, measurement of the density showed that 2014Al-Al2O3p composites contained slight porosity and also the quantity of porosity among the prepared composites higher with diminishing the Al2O3p size and increasing weight percentage of Al2O3p. In addition to this, the results show that by decreasing the Al2O3p size and increasing the weight proportion of the Al2O3p the tensile strength and hardness of the prepared composites increase. Microstructural characterization carried out for the 2014Al-Al2O3 composites using scanning electron microscopy (SEM) which showed a fairly homogeneous distribution of Al2O3p with grain refinement of the matrix. Wear test is conducted for the prepared composites by utilizing a computerized pin on disc wear testing machine which shows greater wear resistance property as the size of the Al2O3p reduced.

Keywords