Synthetic and Systems Biotechnology (Jun 2022)

Carbon-nitrogen bond formation to construct novel polyketide-indole hybrids from the indole-3-carbinol exposed culture of Daldinia eschscholzii

  • Li Ping Lin,
  • Min Wu,
  • Nan Jiang,
  • Wei Wang,
  • Ren Xiang Tan

Journal volume & issue
Vol. 7, no. 2
pp. 750 – 755

Abstract

Read online

A plenty of cytochrome P450s have been annotated in the Daldinia eschosholzii genome. Inspired by the fact that some P450s have been reported to catalyze the carbon-nitrogen (C–N) bond formation, we were curious about whether hybrids through C–N bond formation could be generated in the indole-3-carbinol (I3C) exposed culture of D. eschscholzii. As expected, two skeletally undescribed polyketide-indole hybrids, designated as indolpolyketone A and B (1 and 2), were isolated and assigned to be constructed through C–N bond formation. Their structures were elucidated by 1D and 2D NMR spectra. The absolute configurations of 1 and 2 were determined by comparing the recorded and calculated electronic circular dichroism (ECD) spectra. Furthermore, the plausible biosynthetic pathways for 1 and 2 were proposed. Compounds 1 and 2 exhibited significant antiviral activity against H1N1 with IC50 values of 45.2 and 31.4 μM, respectively. In brief, compounds 1 and 2 were reported here for the first time and were the first example of polyketide-indole hybrids pieced together through C–N bond formation in the I3C-exposed culture of D. eschscholzii. Therefore, this study expands the knowledge about the chemical production of D. eschscholzii through precursor-directed biosynthesis (PDB).

Keywords