International Journal of Mathematics and Mathematical Sciences (Jan 2002)

On the compatible weakly nonlocal Poisson brackets of hydrodynamic type

  • Andrei Ya. Maltsev

DOI
https://doi.org/10.1155/S0161171202202069
Journal volume & issue
Vol. 32, no. 10
pp. 587 – 614

Abstract

Read online

We consider the pairs of general weakly nonlocal Poisson brackets of hydrodynamic type (Ferapontov brackets) and the corresponding integrable hierarchies. We show that, under the requirement of the nondegeneracy of the corresponding “first” pseudo-Riemannian metric g(0) νμ and also some nondegeneracy requirement for the nonlocal part, it is possible to introduce a “canonical” set of “integrable hierarchies” based on the Casimirs, momentum functional and some “canonical Hamiltonian functions.” We prove also that all the “higher” “positive” Hamiltonian operators and the “negative” symplectic forms have the weakly nonlocal form in this case. The same result is also true for “negative” Hamiltonian operators and “positive” symplectic structures in the case when both pseudo-Riemannian metrics g(0) νμ and g(1) νμ are nondegenerate.