Biologia Plantarum (Jan 2015)

Brassinosteroid enhances cytokinin-induced anthocyanin biosynthesis in Arabidopsis seedlings

  • L. B. Yuan,
  • Z. H. Peng,
  • T. T. Zhi,
  • Z. Zho,
  • Y. Liu,
  • Q. Zhu,
  • X. Y. Xiong,
  • C. M. Ren

DOI
https://doi.org/10.1007/s10535-014-0472-z
Journal volume & issue
Vol. 59, no. 1
pp. 99 – 105

Abstract

Read online

To investigate whether brassinosteroids (BR) affects cytokinin (CK)-induced anthocyanin biosynthesis, seedlings of the Arabidopsis dwarf4 (dwf4) mutants including partially suppressing coi1 (psc1) and dwf4-102, which are defective in the BR biosynthesis, and the brassinosteroid-insensitive 1-4 (bri1-4) mutant defective in BR signalling were used for the analysis of CK-induced anthocyanin accumulation and the expression of anthocyanin biosynthetic genes and WD-repeat/Myb/bHLH transcription factors. The results show that the CK-induced anthocyanin accumulation was remarkably reduced in dwf4 and bri1-4 mutants, but distinctly increased in the wild type (WT) treated with BR. Moreover, the CK-induced expressions of the late anthocyanin biosynthetic genes including dihydroflavonol reductase, leucoanthocyanidin dioxygenase, and UDP-glucose: flavonoid-3-O-glucosyl transferase were significantly reduced in bri1-4 and dwf4-102 mutants compared to WT. In addition, the expressions of transcription factors production of anthocyanin pigment 1 (PAP1), glabra 3 (GL3), and enhancer of glabra 3 (EGL3) were induced by CK in WT but not in the bri1-4 and dwf4-102 mutants. These results indicate that BR enhanced the CK-induced anthocyanin biosynthesis by up-regulating the late anthocyanin biosynthetic genes and this regulation might be mediated by the transcription factors PAP1, GL3, and EGL3.

Keywords