Journal of Agriculture and Food Research (Dec 2024)
Application of AMMI and GGE biplot for genotype by environment interaction and yield stability analysis in potato genotypes grown in Dawuro zone, Ethiopia
Abstract
The performance of most crop genotypes is greatly influenced by the interactions between genotype and environment. Providing information on well-adapted and high-yielding potato genotypes in a given environment is paramount for small-holder farmers to enhance their productivity. The study aimed to understand GEI effect on tuber yield, and identify and select widely or specifically adapted high-yielding potato genotypes for production. Eleven genotypes were evaluated using a randomized complete block design with three replications. The results of the AMMI analysis of variance showed that tuber yield significantly (p ≤ 0.05) influenced genotype-environment interaction. This reveals that genotypes exhibit varying mean performance in tuber yield across different environments. The sum squared results showed that genotype (62.40 %) and environment (26.73 %) were the main contributors to tuber yield variation, while the genotype-environment interaction effect (10.87 %) contributed least to then tuber yield total variation. The AMMI, GGE biplot, and GSI analysis revealed Gudanie and Gorebella as superior genotypes in tuber yield, demonstrating high mean performance across tested environments. Thus, Gudanie and Gorebella have been chosen as the most broadly adaptable genotypes for production in all potato-growing agroecologies in the Dawuro zone. The GGE and AMMI biplot provided the genotype-by-environment interaction association among environments and genotypes.