International Journal of Reproductive BioMedicine (Aug 2024)

The regulatory roles of Smad2/3 protein and SMURF2 gene expression in granulosa cells of germinal vesicle and metaphase II oocytes in polycystic ovarian syndrome: A case-control study

  • Marzieh Ghorbani,
  • Marzieh Sanoee Farimani,
  • Iraj Khodadadi,
  • Sina Mohagheghi,
  • Iraj Amiri,
  • Heidar Tayebinia

DOI
https://doi.org/10.18502/ijrm.v22i6.16794
Journal volume & issue
Vol. 22, no. 6
pp. 441 – 450

Abstract

Read online

Abstract Background: The impaired functions of granulosa cells (GCs) in the delayed development and immaturity of oocytes have been reported in polycystic ovary syndrome (PCOs). Even with ovarian stimulation, a large number of oocytes in these patients are still in the stage germinal vesicle (GV). Objective: The levels of Smad2/3, phosphorylated Smad2/3 (P-Smad2/3), the expression of SARA, Smad4, and SMURF2 genes in the GCs surrounding metaphase II (MII) or GV oocytes in PCOs women were investigated. Materials and Methods: GCs of MII and GV oocytes were isolated from 38 women with PCOs and the expression levels of SARA, Smad4, and SMURF2 in surrounding GCs of MII and GV oocytes were determined using reverse-transcription polymerase chain reaction. Also, Smad2/3 and P-Smad2/3 proteins were determined using western blotting. Results: The expression level of SMURF2 was significantly higher in GCs surrounding GV oocytes compared with that of GCs encompassing MII oocytes (p < 0.001). At the same time, no significant differences were observed in SARA and Smad4 expression levels in GCs surrounding GV and MII oocytes. A lower level of P-Smad2/3 was also found in GCs GV oocytes compared with GCs of MII oocytes (p < 0.001). Conclusion: It seems that P-Smad2/3 plays a role in oocyte development, and the downregulation of this protein is associated with a defect in the maturation of GV oocytes. On the other hand, the upregulation of the SMURF2 gene also affects the growth process of GCs and the maturation of GV oocytes.

Keywords