Energetic Materials Frontiers (Jun 2024)

Structural evolvement of 1-methyl-3,4,5-trinitropyrazole at high pressure

  • Guang-yu Qi,
  • Ye Cao,
  • Tian-yu Jiang,
  • Hong Zhang,
  • Yi Wang

Journal volume & issue
Vol. 5, no. 2
pp. 90 – 95

Abstract

Read online

Explosives, a type of energetic material (EM), face a high-pressure environment in the detonation process or under shock conditions. Determining their high-pressure behavior is critical to their explosion and safety. 1-Methyl-3,4,5-trinitropyrazole (MTNP), a carrier of melt-cast explosives, exhibits the potential for replacing trinitrotoluene (TNT). However, there is limited knowledge about its structural evolvement at high pressure. Using a diamond anvil cell (DAC), this study investigated the structural variation of MTNP through in situ high-pressure synchrotron angle-dispersive X-ray diffraction (ADXRD) experiments and Raman measurements. As evidenced by the results, MTNP underwent phase transition at 8.7 GPa and amorphization at 15.3 GPa due to high pressure. Through the analysis of first-principles calculations and Raman spectra, this study proposed the mechanisms behind the changes in MTNP at high pressure. Furthermore, this study systematically explored the structural evolvement of MTNP and the evolution of its weak intermolecular interactions at high pressure, gaining further understanding of MTNP's detonation and safety.

Keywords