ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences (Jun 2016)

ENHANCEMENT OF GENERIC BUILDING MODELS BY RECOGNITION AND ENFORCEMENT OF GEOMETRIC CONSTRAINTS

  • J. Meidow,
  • H. Hammer,
  • M. Pohl,
  • D. Bulatov

DOI
https://doi.org/10.5194/isprs-annals-III-3-333-2016
Journal volume & issue
Vol. III-3
pp. 333 – 338

Abstract

Read online

Many buildings in 3D city models can be represented by generic models, e.g. boundary representations or polyhedrons, without expressing building-specific knowledge explicitly. Without additional constraints, the bounding faces of these building reconstructions do not feature expected structures such as orthogonality or parallelism. The recognition and enforcement of man-made structures within model instances is one way to enhance 3D city models. Since the reconstructions are derived from uncertain and imprecise data, crisp relations such as orthogonality or parallelism are rarely satisfied exactly. Furthermore, the uncertainty of geometric entities is usually not specified in 3D city models. Therefore, we propose a point sampling which simulates the initial point cloud acquisition by airborne laser scanning and provides estimates for the uncertainties. We present a complete workflow for recognition and enforcement of man-made structures in a given boundary representation. The recognition is performed by hypothesis testing and the enforcement of the detected constraints by a global adjustment of all bounding faces. Since the adjustment changes not only the geometry but also the topology of faces, we obtain improved building models which feature regular structures and a potentially reduced complexity. The feasibility and the usability of the approach are demonstrated with a real data set.