Avian Research (Jan 2022)

Habitat selection and food choice of White-naped Cranes (Grus vipio) at stopover sites based on satellite tracking and stable isotope analysis

  • Yunzhu Liu,
  • Lan Wu,
  • Jia Guo,
  • Shengwu Jiao,
  • Sicheng Ren,
  • Cai Lu,
  • Yuyu Wang,
  • Yifei Jia,
  • Guangchun Lei,
  • Li Wen,
  • Liying Su

Journal volume & issue
Vol. 13
p. 100060

Abstract

Read online

By combining satellite tracking, land-cover extracted from Landsite 8 images, and the traditional stable isotope analysis, we studied the habitat selection and food preference of a vulnerable migratory waterbird, the White-naped Crane (Grus vipio), in one of its key stagging sites, the Shandian River Basin in the semi-arid northern China, to provide knowledge that is critical for its conservation in the Anthropocene. Our results showed that the White-naped Cranes used both uplands and natural wetlands in the stopover site. While the cranes used farmland and natural land cover equally as night-time roosting grounds, they spent most daytime foraging at farmlands. Despite the extensive usage of croplands as their foraging ground, the Bayesian mixing models based on stable isotopic analysis revealed that crop residues after harvesting, such as Maize (Zea mays) and Naked Oat (Avena chinensis), were only a small fraction of the White-naped Cranes’ diet (∼19%), and their diet composited mainly natural plants, such as Allium ledebourianum, Potentilla anserina, and P. tanacetifoli. Moreover, more than 20% of the total wetlands in the region were modelled as home range of the cranes. On contrast, less than 10% of croplands and about 1% of the unused uplands were identified as home range. In addition, the entire core habitats were located in natural wetlands. Our findings demonstrated the importance of natural wetlands for the survival of the threatened crane. However, the satellite-derived land cover data showed that croplands increased rapidly in the last decade in this area, at the expense of natural wetlands. With the sharp decrease of White-naped Crane population in China, the conservation of stopover sites becomes imperative. Based on our analysis, we recommend the following management actions: conserving adequate natural wetland area, regulating anthropogenic pressures such as the use of herbicides, expanding the duration and extent of current conservation regulations, establishing a comprehensive monitoring program, and initiating basin-scale ecological restoration, for effective conservation of this threatened species. These integrated conservation strategies for migratory waterbirds are necessary, considering the rapid land-cover changes and agricultural expansion that have been occurring in East Asian-Australasian Flyway, especially in the semi-arid temperate zone.

Keywords