Crystals (May 2022)

Symplectic Method for the Thin Piezoelectric Plates

  • Junjie Fan,
  • Lianhe Li,
  • Alatancang Chen

DOI
https://doi.org/10.3390/cryst12050681
Journal volume & issue
Vol. 12, no. 5
p. 681

Abstract

Read online

The symplectic method for a thin piezoelectric plate problem is developed. The Hamiltonian canonical equation of thin piezoelectric plate is given by using the variational principle. By applying the separation of variables method, we can obtain symplectic orthogonal eigensolutions. As an application, the problem of a thin piezoelectric plate with full edges simply supported under a uniformly distributed load is discussed, and analytical solutions of the deflection and potential of a piezoelectric thin plate are obtained. A numerical example shows that the solutions converge very rapidly. The advantage of this method is that it does not need to assume the predetermined function in advance, so it has better universality. It may also be applied to the problem of thin piezoelectric plate buckling and vibrating.

Keywords