Information (May 2019)

Gain Adaptation in Sliding Mode Control Using Model Predictive Control and Disturbance Compensation with Application to Actuators

  • Benedikt Haus,
  • Paolo Mercorelli,
  • Harald Aschemann

DOI
https://doi.org/10.3390/info10050182
Journal volume & issue
Vol. 10, no. 5
p. 182

Abstract

Read online

In this contribution, a gain adaptation for sliding mode control (SMC) is proposed that uses both linear model predictive control (LMPC) and an estimator-based disturbance compensation. Its application is demonstrated with an electromagnetic actuator. The SMC is based on a second-order model of the electric actuator, a direct current (DC) drive, where the current dynamics and the dynamics of the motor angular velocity are addressed. The error dynamics of the SMC are stabilized by a moving horizon MPC and a Kalman filter (KF) that estimates a lumped disturbance variable. In the application under consideration, this lumped disturbance variable accounts for nonlinear friction as well as model uncertainty. Simulation results point out the benefits regarding a reduction of chattering and a high control accuracy.

Keywords