REM: International Engineering Journal ()

Toughening of bio-PE upon addition of PCL and PEgAA

  • Elieber Barros Bezerra,
  • Danyelle Campos França,
  • Dayanne Diniz de Souza Morais,
  • Danilo Diniz Siqueira,
  • Edcleide Maria Araújo,
  • Renate Maria Ramos Wellen

DOI
https://doi.org/10.1590/0370-44672018720027
Journal volume & issue
Vol. 72, no. 3
pp. 469 – 478

Abstract

Read online

Abstract Researches of polymer blends based on biological and biodegradable polymers appear as a viable alternative to develop environmentally friendly materials. Therefore, the aim of this research was to produce compounds made with biological polyethylene, i.e., Biopolyethylene, Bio-PE, added to the biodegradable Polycaprolactone (PCL) and functionalized by the copolymer of polyethylene grafted with acrylic acid (PEgAA), to obtain better mechanical properties and toughen Bio-PE. Compounds were processed in a co-rotating twin screw extruder and sample tests were injection molded. The compositions investigated were: Bio-PE/PCL at 90/10, 80/20 and 70/30 wt.% without compatibilizer and upon addition of 10 phr (parts per hundred of resin) of PEgAA. The blends were characterized by X-ray diffraction (XRD), impact strength, heat deflection temperature (HDT) and scanning electron microscopy (SEM). Through XRD, it was observed that addition of PCL and PEgAA did not significantly change Bio-PE diffraction patterns. Impact strength data showed that the blends presented a tougher behavior upon addition of PCL and PEgAA. The HDT of compatibilized blend with 20wt.% of PCL was slightly higher. SEM images of compatibilized blends showed lower average particle diameters as well as absence of coalescence and aggregates.

Keywords