Children (Jun 2024)

A Deep Learning Approach to Automatic Tooth Caries Segmentation in Panoramic Radiographs of Children in Primary Dentition, Mixed Dentition, and Permanent Dentition

  • Esra Asci,
  • Munevver Kilic,
  • Ozer Celik,
  • Kenan Cantekin,
  • Hasan Basri Bircan,
  • İbrahim Sevki Bayrakdar,
  • Kaan Orhan

DOI
https://doi.org/10.3390/children11060690
Journal volume & issue
Vol. 11, no. 6
p. 690

Abstract

Read online

Objectives: The purpose of this study was to evaluate the effectiveness of dental caries segmentation on the panoramic radiographs taken from children in primary dentition, mixed dentition, and permanent dentition with Artificial Intelligence (AI) models developed using the deep learning method. Methods: This study used 6075 panoramic radiographs taken from children aged between 4 and 14 to develop the AI model. The radiographs included in the study were divided into three groups: primary dentition (n: 1857), mixed dentition (n: 1406), and permanent dentition (n: 2812). The U-Net model implemented with PyTorch library was used for the segmentation of caries lesions. A confusion matrix was used to evaluate model performance. Results: In the primary dentition group, the sensitivity, precision, and F1 scores calculated using the confusion matrix were found to be 0.8525, 0.9128, and 0.8816, respectively. In the mixed dentition group, the sensitivity, precision, and F1 scores calculated using the confusion matrix were found to be 0.7377, 0.9192, and 0.8185, respectively. In the permanent dentition group, the sensitivity, precision, and F1 scores calculated using the confusion matrix were found to be 0.8271, 0.9125, and 0.8677, respectively. In the total group including primary, mixed, and permanent dentition, the sensitivity, precision, and F1 scores calculated using the confusion matrix were 0.8269, 0.9123, and 0.8675, respectively. Conclusions: Deep learning-based AI models are promising tools for the detection and diagnosis of caries in panoramic radiographs taken from children with different dentition.

Keywords