Biogeosciences (Nov 2020)

Herbicide weed control increases nutrient leaching compared to mechanical weeding in a large-scale oil palm plantation

  • G. Formaglio,
  • E. Veldkamp,
  • X. Duan,
  • A. Tjoa,
  • M. D. Corre

DOI
https://doi.org/10.5194/bg-17-5243-2020
Journal volume & issue
Vol. 17
pp. 5243 – 5262

Abstract

Read online

Nutrient leaching in intensively managed oil palm plantations can diminish soil fertility and water quality. There is a need to reduce this environmental footprint without sacrificing yield. In a large-scale oil palm plantation in Acrisol soil, we quantified nutrient leaching using a full factorial experiment with two fertilization rates (260 kg N, 50 kg P, and 220 kg K ha−1 yr−1 as conventional practice and 136 kg N, 17 kg P, and 187 kg K ha−1 yr−1, equal to harvest export, as reduced management) and two weeding methods (conventional herbicide application and mechanical weeding as reduced management) replicated in four blocks. Over the course of 1 year, we collected monthly soil pore water at 1.5 m depth in three distinct management zones: palm circle, inter-row, and frond-stacked area. Nutrient leaching in the palm circle was low due to low solute concentrations and small drainage fluxes, probably resulting from large plant uptake. In contrast, nitrate and aluminum leaching losses were high in the inter-row due to the high concentrations and large drainage fluxes, possibly resulting from low plant uptake and low pH. In the frond-stacked area, base cation leaching was high, presumably from frond litter decomposition, but N leaching was low. Mechanical weeding reduced leaching losses of base cations compared to the conventional herbicide weeding probably because herbicides decreased ground vegetation and thus reduced soil nutrient retention. Reduced fertilization rates diminished the nitrate leaching losses. Leaching of total nitrogen in the mechanical weeding with reduced fertilization treatment (32±6 kg N ha−1 yr−1) was less than half of the conventional management (74±20 kg N ha−1 yr−1), whereas yields were not affected by these treatments. Our findings suggest that mechanical weeding and reduced fertilization should be included in the program by the Indonesian Ministry of Agriculture for precision farming (e.g., variable rates with plantation age), particularly for large-scale oil palm plantations. We further suggest including mechanical weeding and reduced fertilization in science-based policy recommendations, such as those endorsed by the Roundtable for Sustainable Palm Oil association.