Mathematics (Feb 2021)
Hypercycle Systems of 5-Cycles in Complete 3-Uniform Hypergraphs
Abstract
In this paper, we consider the problem of constructing hypercycle systems of 5-cycles in complete 3-uniform hypergraphs. A hypercycle system C(r,k,v) of order v is a collection of r-uniform k-cycles on a v-element vertex set, such that each r-element subset is an edge in precisely one of those k-cycles. We present cyclic hypercycle systems C(3,5,v) of orders v=25,26,31,35,37,41,46,47,55,56, a highly symmetric construction for v=40, and cyclic 2-split constructions of orders 32,40,50,52. As a consequence, all orders v≤60 permitted by the divisibility conditions admit a C(3,5,v) system. New recursive constructions are also introduced.
Keywords