Graphene, being an atomically thin conducting sheet, is a candidate material for gate electrodes in vacuum electronic devices, as it may be traversed by low-energy electrons. The transparency of graphene to electrons with energies between 2 and 40 eV has been measured by using an optimized vacuum-triode setup. The measured graphene transparency equals ∼60% in most of this energy range. Based on these results, nano-patterned sheets of graphene or of related two-dimensional materials are proposed as gate electrodes for ambipolar vacuum devices.