Buildings (Jul 2025)
Plasticity and Fracture Behavior of High-Strength Bolts Considering Steel Shear Behavior
Abstract
The accurate description of plasticity and fracture behavior is essential in numerically investigating the mechanical responses of high-strength bolts under tension, shear and coupling loads. However, based on the von Mises criterion, inputting the constitutive relation and damage model from the tensile coupon test into the finite element method cannot properly predict the shear behavior of high-strength bolts. Cylindrical tensile coupons and shear specimens of common and weathering high-strength bolts are tested to obtain the complete tensile and shear responses. The combined S-V model and the modified shear constitutive model are collaboratively used to calibrate and describe the tensile and shear constitutive relations of high-strength bolts, and then the Bao–Wierzbicki model is used to predict the tensile and shear fracture behaviors. Furthermore, the collaborating method is used to discuss the applicable range of tensile and shear constitutive models for high-strength bolts under a tensile–shear coupling load, based on numerical analysis against available experimental data in the literature. The loading angle of 30° along the bolt rod is defined as the cut-off to differentiate high-strength bolts under a tensile- or shear-dominated state, and the corresponding mechanical responses of high-strength bolts can be predicted well based on the tensile and shear constitutive models, respectively.
Keywords