Molecular Metabolism (Jun 2024)

Crosstalk interactions between transcription factors ERRα and PPARα assist PPARα-mediated gene expression

  • Sofie J. Desmet,
  • Jonathan Thommis,
  • Tineke Vanderhaeghen,
  • Edmee M.F. Vandenboorn,
  • Dorien Clarisse,
  • Yunkun Li,
  • Steven Timmermans,
  • Daria Fijalkowska,
  • Dariusz Ratman,
  • Evelien Van Hamme,
  • Lode De Cauwer,
  • Bart Staels,
  • Luc Brunsveld,
  • Frank Peelman,
  • Claude Libert,
  • Jan Tavernier,
  • Karolien De Bosscher

Journal volume & issue
Vol. 84
p. 101938

Abstract

Read online

Objective: The peroxisome proliferator-activated receptor α (PPARα) is a transcription factor driving target genes involved in fatty acid β-oxidation. To what extent various PPARα interacting proteins may assist its function as a transcription factor is incompletely understood. An ORFeome-wide unbiased mammalian protein–protein interaction trap (MAPPIT) using PPARα as bait revealed a PPARα-ligand-dependent interaction with the orphan nuclear receptor estrogen-related receptor α (ERRα). The goal of this study was to characterize the nature of the interaction in depth and to explore whether it was of physiological relevance. Methods: We used orthogonal protein–protein interaction assays and pharmacological inhibitors of ERRα in various systems to confirm a functional interaction and study the impact of crosstalk mechanisms. To characterize the interaction surfaces and contact points we applied a random mutagenesis screen and structural overlays. We pinpointed the extent of reciprocal ligand effects of both nuclear receptors via coregulator peptide recruitment assays. On PPARα targets revealed from a genome-wide transcriptome analysis, we performed an ERRα chromatin immunoprecipitation analysis on both fast and fed mouse livers. Results: Random mutagenesis scanning of PPARα's ligand-binding domain and coregulator profiling experiments supported the involvement of (a) bridging coregulator(s), while recapitulation of the interaction in vitro indicated the possibility of a trimeric interaction with RXRα. The PPARα·ERRα interaction depends on 3 C-terminal residues within helix 12 of ERRα and is strengthened by both PGC1α and serum deprivation. Pharmacological inhibition of ERRα decreased the interaction of ERRα to ligand-activated PPARα and revealed a transcriptome in line with enhanced mRNA expression of prototypical PPARα target genes, suggesting a role for ERRα as a transcriptional repressor. Strikingly, on other PPARα targets, including the isolated PDK4 enhancer, ERRα behaved oppositely. Chromatin immunoprecipitation analyses demonstrate a PPARα ligand-dependent ERRα recruitment onto chromatin at PPARα-binding regions, which is lost following ERRα inhibition in fed mouse livers. Conclusions: Our data support the coexistence of multiple layers of transcriptional crosstalk mechanisms between PPARα and ERRα, which may serve to finetune the activity of PPARα as a nutrient-sensing transcription factor.

Keywords