Nanomaterials (Mar 2020)

Solar Cell Applications of Solution-Processed AgInGaSe<sub>2</sub> Thin Films and Improved Properties by Sodium Doping

  • Xianfeng Zhang,
  • Qingxuan Sun,
  • Maoxi Zheng,
  • Zhuohua Duan,
  • Yuehui Wang

DOI
https://doi.org/10.3390/nano10030547
Journal volume & issue
Vol. 10, no. 3
p. 547

Abstract

Read online

Binary nanoparticle inks comprising Ag2Se, In2Se3, and Ga2Se3 were fabricated via a wet ball-milling method and were further used to fabricate AgInGaSe2 (AIGS) precursors by sequentially spraying the inks onto a Mo-coated substrate. AIGS precursors were annealed under a Se atmosphere for 1 h at 570 °C. Na2Se thin layers of varying thicknesses (0, 5, 10, and 20 nm) were vacuum-evaporated onto the Mo layer prior to the AIGS precursors being fabricated to investigate the influence on AIGS solar cells. Sodium plays a critical role in improving the material properties and performance of AIGS thin-film solar cells. The grain size of the AIGS films was significantly improved by sodium doping. Secondary ion mass spectroscopy illustrated slight surficial sodium segregation and heavy sodium segregation at the AIGS/Mo interface. Double-graded band profiles were observed in the AIGS films. With the increase in Na2Se thickness, the basic photovoltaic characteristics of the AIGS solar cells were significantly improved. The highest solar cell conversion efficiency of 6.6% (open-circuit voltage: 775.6 mV, short-circuit current: 15.5 mA/cm2, fill factor: 54.9%, area: 0.2 cm2) was obtained when the Na2Se thickness was 20 nm.

Keywords