Ecotoxicology and Environmental Safety (Dec 2022)

miRNA-21, which disrupts metabolic reprogramming to facilitate CD4+ T cell polarization toward the Th2 phenotype, accelerates arsenite-induced hepatic fibrosis

  • Jing Sun,
  • Meng Wu,
  • Li Wang,
  • Peiwen Wang,
  • Tian Xiao,
  • Suhua Wang,
  • Qizhan Liu

Journal volume & issue
Vol. 248
p. 114321

Abstract

Read online

Elevated levels of arsenic may be present in groundwater, and long-term exposure to arsenic increases hepatic fibrosis. T helper 2 (Th2) cells are involved in the fibrotic cascade, and cell metabolism is a regulatory factor participating in CD4+ T cell differentiation and function. However, the mechanism for Th2 cell regulation of arsenite-induced hepatic fibrosis is not fully understood. In present study, for arsenite-fed mice, activated hepatic stellate cells may be involved in the infiltration of CD4+ T cells, accompanied by up-regulation of GATA3, a transcription factor, and IL-13, the major Th2 cytokine. Exposed to arsenite, Jurkat cells had increased aerobic glycolysis to promote the cell cycle and cell proliferation. Further, this process elevated levels of marker molecules, including those of the Th2 paradigm characterized by GATA3, IL-4, and IL-13. LX-2 cells were activated when treated with culture medium from Jurkat cells exposed to arsenite. miR-21 may be a therapeutic target for arsenite-induced hepatic fibrosis. In vitro, miR-21 knock-down caused inhibition of the PTEN/PI3K/AKT pathway induced by arsenite. It also reversed the elevated glycolysis and the accelerated cell cycle and cell proliferation. Indeed, this alteration led to diminished expression of GATA3, IL-4, and IL-13 in T cells differentiated under Th2 conditions, which inhibits activation of LX-2 cells. Consistent with the results in vitro, miR-21 knock-out in mice reversed hepatic fibrosis and attenuated the levels of GATA3 and IL-13 induced by arsenite. These findings indicate that miR-21 regulates the glycolysis of CD4+ T cells through the PTEN/PI3K/AKT pathway to accelerate the cell cycle, thereby facilitating CD4+ T cell polarization toward Th2 and releasing the fibrogenic factor IL-13, which participates in arsenite-associated hepatic fibrosis. Inhibition of Th2 polarization of CD4+T cells or miR-21 could be a therapeutic strategy to combat hepatic fibrosis caused by exposure to arsenic.

Keywords