Mathematical Biosciences and Engineering (Jan 2023)

MRE: A translational knowledge graph completion model based on multiple relation embedding

  • Xinyu Lu ,
  • Lifang Wang ,
  • Zejun Jiang,
  • Shizhong Liu ,
  • Jiashi Lin

DOI
https://doi.org/10.3934/mbe.2023253
Journal volume & issue
Vol. 20, no. 3
pp. 5881 – 5900

Abstract

Read online

Knowledge graph completion (KGC) has attracted significant research interest in applying knowledge graphs (KGs). Previously, many works have been proposed to solve the KGC problem, such as a series of translational and semantic matching models. However, most previous methods suffer from two limitations. First, current models only consider the single form of relations, thus failing to simultaneously capture the semantics of multiple relations (direct, multi-hop and rule-based). Second, the data-sparse problem of knowledge graphs would make part of relations challenging to embed. This paper proposes a novel translational knowledge graph completion model named multiple relation embedding (MRE) to address the above limitations. We attempt to embed multiple relations to provide more semantic information for representing KGs. To be more specific, we first leverage PTransE and AMIE+ to extract multi-hop and rule-based relations. Then, we propose two specific encoders to encode extracted relations and capture semantic information of multiple relations. We note that our proposed encoders can achieve interactions between relations and connected entities in relation encoding, which is rarely considered in existing methods. Next, we define three energy functions to model KGs based on the translational assumption. At last, a joint training method is adopted to perform KGC. Experimental results illustrate that MRE outperforms other baselines on KGC, demonstrating the effectiveness of embedding multiple relations for advancing knowledge graph completion.

Keywords