Sensors (Sep 2009)

Design and Analyses of a MEMS Based Resonant Magnetometer

  • Dahai Ren,
  • Lingqi Wu,
  • Meizhi Yan,
  • Mingyang Cui,
  • Zheng You,
  • Muzhi Hu

DOI
https://doi.org/10.3390/s90906951
Journal volume & issue
Vol. 9, no. 9
pp. 6951 – 6966

Abstract

Read online

A novel design of a MEMS torsional resonant magnetometer based on Lorentz force is presented and fabricated. The magnetometer consists of a silicon resonator, torsional beam, excitation coil, capacitance plates and glass substrate. Working in a resonant condition, the sensor’s vibration amplitude is converted into the sensing capacitance change, which reflects the outside magnetic flux-density. Based on the simulation, the key structure parameters are optimized and the air damping effect is estimated. The test results of the prototype are in accordance with the simulation results of the designed model. The resolution of the magnetometer can reach 30 nT. The test results indicate its sensitivity of more than 400 mV/μT when operating in a 10 Pa vacuum environment.

Keywords