IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (Jan 2020)
Microwave Radiometer Instability Due to Infrequent Calibration
Abstract
We directly quantify the effect of infrequent calibration on the stability of microwave radiometer temperature measurements (where a power measurement for the unknown source is acquired at a fixed time, but calibration data are acquired at variable earlier times) with robust and nonrobust implementations of a new metric. Based on our new metric, we also determine a component of uncertainty in a single measurement due to infrequent calibration effects. We apply our metric to experimental data acquired from experimental ground-based calibration data acquired from a NASA millimeter-wave imaging radiometer and a NIST radiometer (Noise Figure Radiometer-NFRad). Based on a stochastic model for the NFRad, we determine the random uncertainty of an empirical prediction model of our stability metric by a Monte Carlo method. For comparison purposes, we also present a secondary metric that quantifies stability for the case where calibration data are acquired at a fixed time, but power measurements for the unknown source are acquired at variable later times.
Keywords