Open Mathematics (May 2021)

Multiple solutions and ground state solutions for a class of generalized Kadomtsev-Petviashvili equation

  • Zhu Yuting,
  • Chen Chunfang,
  • Chen Jianhua,
  • Yuan Chenggui

DOI
https://doi.org/10.1515/math-2021-0014
Journal volume & issue
Vol. 19, no. 1
pp. 297 – 305

Abstract

Read online

In this paper, we study the following generalized Kadomtsev-Petviashvili equation ut+uxxx+(h(u))x=Dx−1Δyu,{u}_{t}+{u}_{xxx}+{\left(h\left(u))}_{x}={D}_{x}^{-1}{\Delta }_{y}u, where (t,x,y)∈R+×R×RN−1\left(t,x,y)\in {{\mathbb{R}}}^{+}\times {\mathbb{R}}\times {{\mathbb{R}}}^{N-1}, N≥2N\ge 2, Dx−1f(x,y)=∫−∞xf(s,y)ds{D}_{x}^{-1}f\left(x,y)={\int }_{-\infty }^{x}f\left(s,y){\rm{d}}s, ft=∂f∂t{f}_{t}=\frac{\partial f}{\partial t}, fx=∂f∂x{f}_{x}=\frac{\partial f}{\partial x} and Δy=∑i=1N−1∂2∂yi2{\Delta }_{y}={\sum }_{i=1}^{N-1}\frac{{\partial }^{2}}{{\partial }_{{y}_{i}}^{2}}. We get the existence of infinitely many nontrivial solutions under certain assumptions in bounded domain without Ambrosetti-Rabinowitz condition. Moreover, by using the method developed by Jeanjean [13], we establish the existence of ground state solutions in RN{{\mathbb{R}}}^{N}.

Keywords