Heliyon (Jan 2024)
Long noncoding RNA lnc-SNAPC5-3:4 inhibits malignancy by directly upregulating miR-224-3p in non-small cell lung cancer
Abstract
The mounting body of evidence demonstrates the growing importance of long noncoding RNAs in the advancement of tumors. This study aimed to investigate the molecular mechanism of lnc-SNAPC5-3:4 in non-small cell lung cancer (NSCLC). We investigated the expression of miR-224-3p and lnc-SNAPC5-3:4 in clinical NSCLC samples and NSCLC cell lines using reverse transcription polymerase chain reaction (RT-PCR). In vitro studies, A549 cell growth was estimated using Cell Counting Kit-8 (CCK-8), 5-ethynyl-2′-deoxyuridine (EDU), and flow cytometry assays. In vivo studies, NSCLC tumorigenesis was determined using xenograft tumor mouse models, tumor growth was evaluated using antigen Kiel 67 (Ki67) staining, and tumor apoptosis was detected through terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. The relationship between lnc-SNAPC5-3:4 and miR-224-3p was determined by luciferase reporter gene assay. Results indicated that the expression of lnc-SNAPC5-3:4 was observed to be downregulated in NSCLC tissues and cell lines. After overexpression of lnc-SNAPC5-3:4 in cultured A549 cells, proliferation decreased and apoptosis increased. Furthermore, the expression of miR-224-3p was targeted and negatively regulated by lnc-SNAPC5-3:4. The lnc-SNAPC5-3:4 upregulation inhibited cell proliferation and promoted apoptosis, which was partially blocked by miR-224-3p overexpression in A549 cells. In addition, we constructed a subcutaneous inoculation model using BALB/c nude mice, and the results indicated that lnc-SNAPC5-3:4 overexpression restrained the growth of subcutaneous tumors, decreased Ki67 expression levels, and increased apoptosis, as indicated by TUNEL staining in nude mice. However, miR-224-3p transfection resulted in the reversal of the inhibitory effect of lnc-SNAPC5-3:4 on tumor growth. In conclusion, our study revealed that lnc-SNAPC5-3:4 inhibits tumor progression in NSCLC by targeting miR-224-3p. This study provides a potential therapeutic target for inhibiting NSCLC progression.