Sensors (Jul 2024)

Enhancing Deep Learning-Based Segmentation Accuracy through Intensity Rendering and 3D Point Interpolation Techniques to Mitigate Sensor Variability

  • Myeong-Jun Kim,
  • Suyeon Kim,
  • Banghyon Lee,
  • Jungha Kim

DOI
https://doi.org/10.3390/s24144475
Journal volume & issue
Vol. 24, no. 14
p. 4475

Abstract

Read online

In the context of LiDAR sensor-based autonomous vehicles, segmentation networks play a crucial role in accurately identifying and classifying objects. However, discrepancies between the types of LiDAR sensors used for training the network and those deployed in real-world driving environments can lead to performance degradation due to differences in the input tensor attributes, such as x, y, and z coordinates, and intensity. To address this issue, we propose novel intensity rendering and data interpolation techniques. Our study evaluates the effectiveness of these methods by applying them to object tracking in real-world scenarios. The proposed solutions aim to harmonize the differences between sensor data, thereby enhancing the performance and reliability of deep learning networks for autonomous vehicle perception systems. Additionally, our algorithms prevent performance degradation, even when different types of sensors are used for the training data and real-world applications. This approach allows for the use of publicly available open datasets without the need to spend extensive time on dataset construction and annotation using the actual sensors deployed, thus significantly saving time and resources. When applying the proposed methods, we observed an approximate 20% improvement in mIoU performance compared to scenarios without these enhancements.

Keywords