Energies (Sep 2022)

Synthesis of Biodiesel from <i>Ricinus communis</i> L. Seed Oil, a Promising Non-Edible Feedstock Using Calcium Oxide Nanoparticles as a Catalyst

  • Hammad Ahmad Jan,
  • Igor Šurina,
  • Akhtar Zaman,
  • Ahmed S. Al-Fatesh,
  • Fazli Rahim,
  • Raja L. Al-Otaibi

DOI
https://doi.org/10.3390/en15176425
Journal volume & issue
Vol. 15, no. 17
p. 6425

Abstract

Read online

This work aimed to synthesize biodiesel from Ricinus communis L., using calcium oxide (CaO) nanoparticles as a catalyst. The CaO nanoparticles were examined by scanning electron microscopy (SEM) and X-Ray Diffraction (XRD). The physico-chemical properties of biodiesel were studied through H and C-NMR, GC-MS, FT-IR, and fuel properties were studied according to ASTM and EN standard methods. The oil content of the feedstock was 53.7% with a free fatty acid (FFA) content of 0.89 mg KOH/g. The suitable condition for the optimum yield (89%) of biodiesel was 1:15 of oil to methanol using 20 mg of catalyst at a temperature of 60 °C for 80 to 100 min of reaction time. The H and C-NMR confirm the biodiesel synthesis by showing important peaks at 3.661, 2.015–2.788, 24.83–34.16 and 174.26 and 130.15 ppm. Similarly, GC-MS spectroscopy confirmed 18 different types of fatty acid methyl esters (FAME) in the biodiesel sample. FT-IR spectroscopy confirmed the synthesis of biodiesel by showing characteristic peaks of biodiesel formation in the range of 1725–1750 cm−1 and 1000–1300 cm−1. The fuel properties were compared with the international ASTM and EN standards. The physico-chemical properties confirm that RCB is both an engine and environmentally friendly fuel.

Keywords