Remote Sensing (Apr 2020)

Evaluation of Prescribed Fires from Unmanned Aerial Vehicles (UAVs) Imagery and Machine Learning Algorithms

  • Luis A. Pérez-Rodríguez,
  • Carmen Quintano,
  • Elena Marcos,
  • Susana Suarez-Seoane,
  • Leonor Calvo,
  • Alfonso Fernández-Manso

DOI
https://doi.org/10.3390/rs12081295
Journal volume & issue
Vol. 12, no. 8
p. 1295

Abstract

Read online

Prescribed fires have been applied in many countries as a useful management tool to prevent large forest fires. Knowledge on burn severity is of great interest for predicting post-fire evolution in such burned areas and, therefore, for evaluating the efficacy of this type of action. In this research work, the severity of two prescribed fires that occurred in “La Sierra de Uría” (Asturias, Spain) in October 2017, was evaluated. An Unmanned Aerial Vehicle (UAV) with a Parrot SEQUOIA multispectral camera on board was used to obtain post-fire surface reflectance images on the green (550 nm), red (660 nm), red edge (735 nm), and near-infrared (790 nm) bands at high spatial resolution (GSD 20 cm). Additionally, 153 field plots were established to estimate soil and vegetation burn severity. Severity patterns were explored using Probabilistic Neural Networks algorithms (PNN) based on field data and UAV image-derived products. PNN classified 84.3% of vegetation and 77.8% of soil burn severity levels (overall accuracy) correctly. Future research needs to be carried out to validate the efficacy of this type of action in other ecosystems under different climatic conditions and fire regimes.

Keywords