International Journal of Mining Science and Technology (Nov 2018)

Spontaneous combustion of coals and coal-shales

  • M. Onifade,
  • B. Genc

Journal volume & issue
Vol. 28, no. 6
pp. 933 – 940

Abstract

Read online

Spontaneous combustion of coal is a well-known phenomena around the globe. Apart from the coal itself, burning coal-shales is becoming a problem in the South African coal mines. Serious incidents of spontaneous combustion have been reported as a result of self-heating of reactive coal-shales. The intrinsic properties and spontaneous combustion tests of 28 selected coal and coal-shale samples were conducted and a relationship between the two has been established. Intrinsic properties were obtained by using the proximate and ultimate analysis, and spontaneous combustion liability tests results were obtained by using the Wits-Ehac and Wits-CT indices. The experimental results show that intrinsic properties of these materials complement to the spontaneous combustion liability tests results. Comparative analyses of intrinsic properties and spontaneous combustion characteristics indicate similarities between the mechanism of coal oxidation and that of the oxidative processes undergone by coal-shales. For the tested samples, coal samples have a higher intrinsic spontaneous combustion reactivity rating than the coal-shales. Furthermore, an increase in carbon, moisture, hydrogen, volatile matter, nitrogen and a decrease in ash content indicate an increased proneness to self-heating. The concentration of pyrite found in the coal-shales accelerates self-heating. The event of spontaneous combustion can occur if coal-shales absorb sufficient oxygen when subjected to atmospheric conditions. Keywords: Spontaneous combustion, Coal-shales, Proximate and ultimate analysis, Wits-Ehac index, Wits-CT index