Applied Sciences (Aug 2018)

Effects of Different Variables on the Formation of Mesopores in Y Zeolite by the Action of CTA+ Surfactant

  • Juliana F. Silva,
  • Edilene Deise Ferracine,
  • Dilson Cardoso

DOI
https://doi.org/10.3390/app8081299
Journal volume & issue
Vol. 8, no. 8
p. 1299

Abstract

Read online

Zeolites are microporous crystalline aluminosilicates with a number of useful properties including acidity, hydrothermal stability, and structural selectivity. However, the exclusive presence of micropores restricts diffusive mass transport and reduces the access of large molecules to active sites. In order to resolve this problem, mesopores can be created in the zeolite, combining the advantages of microporous and mesoporous materials. In this work, mesospores were created in the Ultrastable USY zeolite (silicon/aluminum ratio of 15) using alkaline treatment (NaOH) in the presence of cetyltrimethylammonium bromide surfactant, followed by hydrothermal treatment. The effects of the different concentrations of NaOH and the surfactant on the textural, chemical, and morphological characteristics of the modified zeolites were evaluated. Generating mesoporosity in the USY zeolite was possible through the simultaneous presence of surfactant and alkaline solution. Among the parameters studied, the concentration of the alkaline medium had the greatest influence on the textural properties of the zeolites. The presence of Cetyltrimethylammonium Bromide (CTA+) prevented the amorphization of the structure during the modification and also avoided desilication of the zeolite.

Keywords