Atmospheric Chemistry and Physics (Jun 2023)
An intercomparison study of four different techniques for measuring the chemical composition of nanoparticles
- L. Caudillo,
- M. Surdu,
- B. Lopez,
- M. Wang,
- M. Wang,
- M. Thoma,
- S. Bräkling,
- A. Buchholz,
- M. Simon,
- A. C. Wagner,
- T. Müller,
- T. Müller,
- M. Granzin,
- M. Heinritzi,
- A. Amorim,
- D. M. Bell,
- Z. Brasseur,
- L. Dada,
- J. Duplissy,
- J. Duplissy,
- H. Finkenzeller,
- X.-C. He,
- H. Lamkaddam,
- N. G. A. Mahfouz,
- V. Makhmutov,
- V. Makhmutov,
- H. E. Manninen,
- G. Marie,
- R. Marten,
- R. L. Mauldin,
- R. L. Mauldin,
- B. Mentler,
- A. Onnela,
- T. Petäjä,
- J. Pfeifer,
- J. Pfeifer,
- M. Philippov,
- A. A. Piedehierro,
- B. Rörup,
- W. Scholz,
- J. Shen,
- D. Stolzenburg,
- C. Tauber,
- P. Tian,
- A. Tomé,
- N. S. Umo,
- D. S. Wang,
- Y. Wang,
- S. K. Weber,
- S. K. Weber,
- A. Welti,
- M. Zauner-Wieczorek,
- U. Baltensperger,
- R. C. Flagan,
- A. Hansel,
- A. Hansel,
- J. Kirkby,
- J. Kirkby,
- M. Kulmala,
- M. Kulmala,
- M. Kulmala,
- K. Lehtipalo,
- K. Lehtipalo,
- D. R. Worsnop,
- D. R. Worsnop,
- I. E. Haddad,
- N. M. Donahue,
- A. L. Vogel,
- A. Kürten,
- J. Curtius
Affiliations
- L. Caudillo
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- M. Surdu
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
- B. Lopez
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- M. Wang
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- M. Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- M. Thoma
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- S. Bräkling
- TOFWERK AG, 3600 Thun, Switzerland
- A. Buchholz
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- M. Simon
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- A. C. Wagner
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- T. Müller
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- T. Müller
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
- M. Granzin
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- M. Heinritzi
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- A. Amorim
- CENTRA, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749–016, Lisbon, Portugal
- D. M. Bell
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Z. Brasseur
- Institute for Atmospheric and Earth System Research (INAR)/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
- L. Dada
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
- J. Duplissy
- Institute for Atmospheric and Earth System Research (INAR)/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
- J. Duplissy
- Helsinki Institute of Physics, University of Helsinki, 00014 Helsinki, Finland
- H. Finkenzeller
- Department of Chemistry, CIRES, University of Colorado Boulder, Boulder, CO 80309-0215, USA
- X.-C. He
- Institute for Atmospheric and Earth System Research (INAR)/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
- H. Lamkaddam
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
- N. G. A. Mahfouz
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- V. Makhmutov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991, Moscow, Russia
- V. Makhmutov
- Moscow Institute of Physics and Technology, Moscow, 117303, Russia
- H. E. Manninen
- CERN, 1211 Geneva, Switzerland
- G. Marie
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- R. Marten
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
- R. L. Mauldin
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- R. L. Mauldin
- Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, CO 80309, USA
- B. Mentler
- Institute for Ion and Applied Physics, University of Innsbruck, 6020 Innsbruck, Austria
- A. Onnela
- CERN, 1211 Geneva, Switzerland
- T. Petäjä
- Institute for Atmospheric and Earth System Research (INAR)/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
- J. Pfeifer
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- J. Pfeifer
- CERN, 1211 Geneva, Switzerland
- M. Philippov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991, Moscow, Russia
- A. A. Piedehierro
- Finnish Meteorological Institute, 00560 Helsinki, Finland
- B. Rörup
- Institute for Atmospheric and Earth System Research (INAR)/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
- W. Scholz
- Institute for Ion and Applied Physics, University of Innsbruck, 6020 Innsbruck, Austria
- J. Shen
- Institute for Atmospheric and Earth System Research (INAR)/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
- D. Stolzenburg
- Institute for Atmospheric and Earth System Research (INAR)/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
- C. Tauber
- Faculty of Physics, University of Vienna, 1090 Vienna, Austria
- P. Tian
- Beijing Weather Modification Office, 100089 Beijing, China
- A. Tomé
- IDL, Universidade da Beira Interior, R. Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
- N. S. Umo
- Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- D. S. Wang
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Y. Wang
- Institute for Atmospheric and Earth System Research (INAR)/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
- S. K. Weber
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- S. K. Weber
- CERN, 1211 Geneva, Switzerland
- A. Welti
- Finnish Meteorological Institute, 00560 Helsinki, Finland
- M. Zauner-Wieczorek
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- U. Baltensperger
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
- R. C. Flagan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- A. Hansel
- Institute for Ion and Applied Physics, University of Innsbruck, 6020 Innsbruck, Austria
- A. Hansel
- Ionicon Analytik GmbH, 6020 Innsbruck, Austria
- J. Kirkby
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- J. Kirkby
- CERN, 1211 Geneva, Switzerland
- M. Kulmala
- Institute for Atmospheric and Earth System Research (INAR)/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
- M. Kulmala
- Helsinki Institute of Physics, University of Helsinki, 00014 Helsinki, Finland
- M. Kulmala
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
- K. Lehtipalo
- Institute for Atmospheric and Earth System Research (INAR)/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
- K. Lehtipalo
- Finnish Meteorological Institute, 00560 Helsinki, Finland
- D. R. Worsnop
- Institute for Atmospheric and Earth System Research (INAR)/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
- D. R. Worsnop
- Aerodyne Research, Billerica, MA 01821, USA
- I. E. Haddad
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
- N. M. Donahue
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- A. L. Vogel
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- A. Kürten
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- J. Curtius
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- DOI
- https://doi.org/10.5194/acp-23-6613-2023
- Journal volume & issue
-
Vol. 23
pp. 6613 – 6631
Abstract
Currently, the complete chemical characterization of nanoparticles (< 100 nm) represents an analytical challenge, since these particles are abundant in number but have negligible mass. Several methods for particle-phase characterization have been recently developed to better detect and infer more accurately the sources and fates of sub-100 nm particles, but a detailed comparison of different approaches is missing. Here we report on the chemical composition of secondary organic aerosol (SOA) nanoparticles from experimental studies of α-pinene ozonolysis at −50, −30, and −10 ∘C and intercompare the results measured by different techniques. The experiments were performed at the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN). The chemical composition was measured simultaneously by four different techniques: (1) thermal desorption–differential mobility analyzer (TD–DMA) coupled to a NO3- chemical ionization–atmospheric-pressure-interface–time-of-flight (CI–APi–TOF) mass spectrometer, (2) filter inlet for gases and aerosols (FIGAERO) coupled to an I− high-resolution time-of-flight chemical ionization mass spectrometer (HRToF-CIMS), (3) extractive electrospray Na+ ionization time-of-flight mass spectrometer (EESI-TOF), and (4) offline analysis of filters (FILTER) using ultra-high-performance liquid chromatography (UHPLC) and heated electrospray ionization (HESI) coupled to an Orbitrap high-resolution mass spectrometer (HRMS). Intercomparison was performed by contrasting the observed chemical composition as a function of oxidation state and carbon number, by estimating the volatility and comparing the fraction of volatility classes, and by comparing the thermal desorption behavior (for the thermal desorption techniques: TD–DMA and FIGAERO) and performing positive matrix factorization (PMF) analysis for the thermograms. We found that the methods generally agree on the most important compounds that are found in the nanoparticles. However, they do see different parts of the organic spectrum. We suggest potential explanations for these differences: thermal decomposition, aging, sampling artifacts, etc. We applied PMF analysis and found insights of thermal decomposition in the TD–DMA and the FIGAERO.